Cambridge IGCSE ${ }^{\text {TM }}$

CANDIDATE NAME

CENTRE

ADDITIONAL MATHEMATICS

0606/13
Paper 1
October/November 2021

You must answer on the question paper.
No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 80 .
- The number of marks for each question or part question is shown in brackets [].

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $a x^{2}+b x+c=0$,

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Binomial Theorem

$$
(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{r} a^{n-r} b^{r}+\ldots+b^{n}
$$

where n is a positive integer and $\binom{n}{r}=\frac{n!}{(n-r)!r!}$

Arithmetic series $\quad u_{n}=a+(n-1) d$

$$
S_{n}=\frac{1}{2} n(a+l)=\frac{1}{2} n\{2 a+(n-1) d\}
$$

Geometric series $\quad u_{n}=a r^{n-1}$

$$
\begin{aligned}
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \quad(r \neq 1) \\
& S_{\infty}=\frac{a}{1-r}(|r|<1)
\end{aligned}
$$

2. TRIGONOMETRY

Identities

$$
\begin{gathered}
\sin ^{2} A+\cos ^{2} A=1 \\
\sec ^{2} A=1+\tan ^{2} A \\
\operatorname{cosec}^{2} A=1+\cot ^{2} A
\end{gathered}
$$

Formulae for $\triangle A B C$

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A \\
\Delta=\frac{1}{2} b c \sin A
\end{gathered}
$$

1 On the axes below, sketch the graph of $y=-\frac{1}{4}(2 x+1)(x-3)(x+4) \quad$ stating the intercepts with the coordinate axes.

2 A particle moves in a straight line such that its velocity, $v \mathrm{~ms}^{-1}$, at time t seconds after passing through a fixed point O, is given by $v=\mathrm{e}^{3 t}-25$. Find the speed of the particle when $t=1$.

3 Solve the equation $\cot ^{2}\left(2 x-\frac{\pi}{3}\right)=\frac{1}{3}$, where x is in radians and $0 \leqslant x<\pi$.

4 (a) Find the first three terms, in ascending powers of x^{2}, in the expansion of $\left(\frac{1}{2}-\frac{2}{3} x^{2}\right)^{8}$. Write your
coefficients as rational numbers.
(b) Find the coefficient of x^{2} in the expansion of $\left(\frac{1}{2}-\frac{2}{3} x^{2}\right)^{8}\left(2 x+\frac{1}{x}\right)^{2}$.

5 A geometric progression is such that its sum to 4 terms is 17 times its sum to 2 terms. It is given that the common ratio of this geometric progression is positive and not equal to 1 .
(a) Find the common ratio of this geometric progression.
(b) Given that the 6 th term of the geometric progression is 64 , find the first term.
(c) Explain why this geometric progression does not have a sum to infinity.

6 (a) A 5 -digit number is made using the digits $0,1,2,3,4,5,6,7,8$ and 9 . No digit may be used more than once in any 5 -digit number. Find how many such 5 -digit numbers are odd and greater than 70000 .
(b) The number of combinations of n objects taken 3 at a time is 2 times the number of combinations of n objects taken 2 at a time. Find the value of n.

The diagram shows a circle, centre O, radius 10 cm . The points A, B and P lie on the circumference of the circle. The chord $A B$ is of length 14 cm . The point Q lies on $A B$ and the line $P O Q$ is perpendicular to $A B$.
(a) Show that angle $P O A$ is 2.366 radians, correct to 3 decimal places.
(b) Find the area of the shaded region.
(c) Find the perimeter of the shaded region.

8 The curves $y=x^{2}+x-1$ and $2 y=x^{2}+6 x-2$ intersect at the points A and B.
(a) Show that the mid-point of the line $A B$ is $(2,9)$.

The line l is the perpendicular bisector of $A B$.
(b) Show that the point $C(12,7)$ lies on the line l.
(c) The point D also lies on l, such that the distance of D from $A B$ is two times the distance of C from $A B$. Find the coordinates of the two possible positions of D.

9 When $\mathrm{e}^{2 y}$ is plotted against x^{2}, a straight line graph passing through the points $(4,7.96)$ and $(2,3.76)$ is obtained.
(a) Find y in terms of x.
(b) Find y when $x=1$.
(c) Using your equation from part (a), find the positive values of x for which the straight line exists.

10 A curve with equation $y=\mathrm{f}(x)$ is such that $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=(2 x+3)^{-\frac{1}{2}}+5$ for $x>0$. The curve has gradient 10 at the point $\left(3, \frac{19}{2}\right)$.
(a) Show that, when $x=11, \frac{\mathrm{~d} y}{\mathrm{~d} x}=52$.
(b) Find $\mathrm{f}(x)$.

11 A curve has equation $y=\frac{\left(x^{2}-5\right)^{\frac{1}{3}}}{x+1}$ for $x>-1$.
(a) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{A x^{2}+B x+C}{3(x+1)^{2}\left(x^{2}-5\right)^{\frac{2}{3}}}$ where A, B and C are integers.
(b) Find the x-coordinate of the stationary point on the curve.
(c) Explain how you could determine the nature of this stationary point.

