Cambridge IGCSE ${ }^{\text {TM }}$

CANDIDATE NAME

CENTRE

ADDITIONAL MATHEMATICS
0606/12
Paper 1
October/November 2021
2 hours
You must answer on the question paper.
No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 80 .
- The number of marks for each question or part question is shown in brackets [].

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $a x^{2}+b x+c=0$,

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Binomial Theorem

$$
(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{r} a^{n-r} b^{r}+\ldots+b^{n}
$$

where n is a positive integer and $\binom{n}{r}=\frac{n!}{(n-r)!r!}$

Arithmetic series

$$
\begin{aligned}
& u_{n}=a+(n-1) d \\
& S_{n}=\frac{1}{2} n(a+l)=\frac{1}{2} n\{2 a+(n-1) d\}
\end{aligned}
$$

Geometric series

$$
\begin{aligned}
& u_{n}=a r^{n-1} \\
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}(r \neq 1) \\
& S_{\infty}=\frac{a}{1-r}(|r|<1)
\end{aligned}
$$

2. TRIGONOMETRY

Identities

$$
\begin{gathered}
\sin ^{2} A+\cos ^{2} A=1 \\
\sec ^{2} A=1+\tan ^{2} A \\
\operatorname{cosec}^{2} A=1+\cot ^{2} A
\end{gathered}
$$

Formulae for $\triangle A B C$

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A \\
\Delta=\frac{1}{2} b c \sin A
\end{gathered}
$$

1

The diagram shows the graph of the cubic function $y=\mathrm{f}(x)$. The intercepts of the curve with the axes are all integers.
(a) Find the set of values of x for which $\mathrm{f}(x)<0$.
(b) Find an expression for $\mathrm{f}(x)$.

2 (a) Given that $\frac{\sqrt[3]{x y}(z y)^{2}}{(x z)^{-3} \sqrt{z}}=x^{a} y^{b} z^{c}$, find the exact values of the constants a, b and c.
(b) Solve the equation $5\left(2^{2 p+1}\right)-17\left(2^{p}\right)+3=0$.

3 (a) Write $3+2 \lg a-4 \lg b$ as a single logarithm to base 10 .
(b) Solve the equation $3 \log _{a} 4+2 \log _{4} a=7$.

4 Solve the equation $\cot \left(2 x+\frac{\pi}{3}\right)-\sqrt{3}=0$, where $-\pi<x<\pi$ radians. Give your answers in terms of π.

5 Find the possible values of the constant c for which the line $y=c$ is a tangent to the curve $y=5 \sin \frac{x}{3}+4$.

6 DO NOT USE A CALCULATOR IN THIS QUESTION.

The polynomial $\mathrm{p}(x)=10 x^{3}+a x^{2}-10 x+b$, where a and b are integers, is divisible by $2 x+1$. When $\mathrm{p}(x)$ is divided by $x+1$, the remainder is -24 .
(a) Find the value of a and of b.
(b) Find an expression for $\mathrm{p}(x)$ as the product of three linear factors.
(c) Write down the remainder when $\mathrm{p}(x)$ is divided by x.

7 (a)

The diagram shows triangle $O A C$, where $\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O B}=\mathbf{b}$ and $\overrightarrow{O C}=\mathbf{c}$. The point B lies on the line $A C$ such that $A B: B C=m: n$, where m and n are constants.
(i) Write down $\overrightarrow{A B}$ in terms of \mathbf{a} and \mathbf{b}.
(ii) Write down $\overrightarrow{B C}$ in terms of \mathbf{b} and \mathbf{c}.
(iii) Hence show that $n \mathbf{a}+m \mathbf{c}=(m+n) \mathbf{b}$.
(b) Given that $\lambda\binom{2}{1}+(\mu-1)\binom{-4}{7}=(\lambda+1)\binom{4}{-2}$, find the value of each of the constants λ and μ.

8 (a) A 5-digit number is made using the digits $0,1,4,5,6,7$ and 9 . No digit may be used more than once in any 5-digit number. Find how many such 5-digit numbers are even and greater than 50000.
(b) The number of combinations of n objects taken 4 at a time is equal to 6 times the number of combinations of n objects taken 2 at a time. Calculate the value of n.

The diagram shows a circle, centre O, radius 12 cm , and a rectangle $A B C D$. The diagonals $A C$ and $B D$ intersect at O. The sides $A B$ and $A D$ of the rectangle have lengths 6 cm and 4 cm respectively. The points M and N lie on the circumference of the circle such that $M A C$ and $N D B$ are straight lines.
(a) Show that angle $A O D$ is 1.176 radians correct to 3 decimal places.
(b) Find the perimeter of the shaded region.
(c) Find the area of the shaded region.

The diagram shows the graph of the curve $y=\frac{1}{(x+2)^{2}}+\frac{3}{(x+2)}$ for $x>-2$. The points A and B lie on the curve such that the x-coordinates of A and of B are -1 and 2 respectively.
(a) Find the exact y-coordinates of A and of B.
(b) Find the area of the shaded region enclosed by the line $A B$ and the curve, giving your answer in the form $\frac{p}{q}-\ln r$, where p, q and r are integers.

Additional working space for Question 10(b).

11 (a)

The diagram shows the velocity-time graph for a particle P, travelling in a straight line with velocity vms^{-1} at a time t seconds. P accelerates at a constant rate for the first 10 s of its motion, and then travels at constant velocity, $30 \mathrm{~ms}^{-1}$, for another $15 \mathrm{~s} . P$ then accelerates at a constant rate for a further 10 s and reaches a velocity of $60 \mathrm{~ms}^{-1} . P$ then decelerates at a constant rate and comes to rest when $t=55$.
(i) Find the acceleration when $t=12$.
(ii) Find the acceleration when $t=50$.
(iii) Find the total distance travelled by the particle P.
(b) A particle Q travels in a straight line such that its velocity, $v \mathrm{~ms}^{-1}$, at time $t \mathrm{~s}$ after passing through a fixed point O is given by $v=4 \cos 3 t-4$.
(i) Find the speed of Q when $t=\frac{5 \pi}{9}$.
(ii) Find the smallest positive value of t for which the acceleration of Q is zero.
(iii) Find an expression for the displacement of Q from O at time t.

