Cambridge IGCSE ${ }^{\text {TM }}$

CANDIDATE NAME

CENTRE NUMBER

ADDITIONAL MATHEMATICS

You must answer on the question paper.
No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 80 .
- The number of marks for each question or part question is shown in brackets [].

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $a x^{2}+b x+c=0$,

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Binomial Theorem

$$
(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{r} a^{n-r} b^{r}+\ldots+b^{n}
$$

where n is a positive integer and $\binom{n}{r}=\frac{n!}{(n-r)!r!}$

Arithmetic series

$$
\begin{aligned}
& u_{n}=a+(n-1) d \\
& S_{n}=\frac{1}{2} n(a+l)=\frac{1}{2} n\{2 a+(n-1) d\}
\end{aligned}
$$

Geometric series

$$
\begin{aligned}
& u_{n}=a r^{n-1} \\
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \quad(r \neq 1) \\
& S_{\infty}=\frac{a}{1-r}(|r|<1)
\end{aligned}
$$

2. TRIGONOMETRY

Identities

$$
\begin{gathered}
\sin ^{2} A+\cos ^{2} A=1 \\
\sec ^{2} A=1+\tan ^{2} A \\
\operatorname{cosec}^{2} A=1+\cot ^{2} A
\end{gathered}
$$

Formulae for $\triangle A B C$

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A \\
\Delta=\frac{1}{2} b c \sin A
\end{gathered}
$$

1 Find the possible values of the constant k such that the equation $k x^{2}+4 k x+3 k+1=0$ has two different real roots.

2 (a) Find $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{2} \mathrm{e}^{3 x}\right)$.
(b) (i) Find $\frac{\mathrm{d}}{\mathrm{d} x}\left(3 x^{2}+4\right)^{\frac{1}{3}}$.
(ii) Hence find $\int_{0}^{2} x\left(3 x^{2}+4\right)^{-\frac{2}{3}} \mathrm{~d} x$.

3 Solve the equation $\operatorname{cosec}^{2} \theta+2 \cot ^{2} \theta=2 \cot \theta+9$, where θ is in radians and $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$.

4 (a) Find the first three non-zero terms in the expansion of $\left(2-\frac{x^{2}}{4}\right)^{6}$ in ascending powers of x. Simplify
each term.
(b) Hence find the term independent of x in the expansion of $\left(2-\frac{x^{2}}{4}\right)^{6}\left(3-\frac{1}{x^{2}}\right)^{2}$.

5 When e^{y} is plotted against x^{2} a straight line graph passing through the points $(2.24,5)$ and $(4.74,10)$ is obtained. Find y in terms of x.

The diagram shows a circle, centre O, radius $2 a$. The points A and B lie on the circumference of the circle. The points C and D are the mid-points of the lines $O B$ and $O A$ respectively. The arc $D C$ is part of a circle centre O. The chord $A B$ is of length $2 a$.
(a) Find angle $A O B$, giving your answer in radians in terms of π.
(b) Find, in terms of a and π, the perimeter of the shaded region $A B C D$.
(c) Find, in terms of a and π, the area of the shaded region $A B C D$.

7 (a) A committee of 8 people is to be formed from 5 teachers, 4 doctors and 3 police officers. Find the number of different committees that could be chosen if
(i) all 4 doctors are on the committee,
(ii) there are at least 2 teachers on the committee.
(b) Given that ${ }^{n} \mathrm{P}_{5}=6 \times{ }^{n-1} \mathrm{P}_{4}$, find the value of n.

8

The graph shows the curve $y=a \cos b x+c$, for $0 \leqslant x \leqslant 2.8$, where a, b and c are constants and x is in radians. The curve meets the y-axis at $(0,3)$ and the x-axis at the point P and point $R\left(\frac{5 \pi}{6}, 0\right)$.

The curve has a minimum at point Q. The period of $a \cos b x+c$ is π radians.
(a) Find the value of each of a, b and c.
(b) Find the coordinates of P.
(c) Find the coordinates of Q.

9 (a) Show that the equation of the curve $y=\left(x^{2}-4\right)(x-2)$ can be written as $y=x^{3}+a x^{2}+b x+8$, where a and b are integers. Hence find the exact coordinates of the stationary points on the curve.
(b) On the axes, sketch the graph of $y=\left|\left(x^{2}-4\right)(x-2)\right|$, stating the intercepts with the coordinate axes.

(c) Find the possible values of the constant k for which $\left|\left(x^{2}-4\right)(x-2)\right|=k$ has exactly 4 different solutions.

10

The diagram shows the parallelogram $O A B C$, such that $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O C}=\mathbf{c}$. The point D lies on $C B$ such that $C D: D B=3: 1$. When extended, the lines $A B$ and $O D$ meet at the point E. It is given that $\overrightarrow{O E}=h \overrightarrow{O D}$ and $\overrightarrow{B E}=k \overrightarrow{A B}$, where h and k are constants.
(a) Find $\overrightarrow{D E}$ in terms of a, \mathbf{c} and h.
(b) Find $\overrightarrow{D E}$ in terms of a, cand k.
(c) Hence find the value of h and of k.

11 The line $x+2 y=10$ intersects the two lines satisfying the equation $|x+y|=2$ at the points A and B.
(a) Show that the point $C(-5,20)$ lies on the perpendicular bisector of the line $A B$.
(b) The point D also lies on this perpendicular bisector. M is the mid-point of $A B$. The distance $C D$ is three times the distance of $C M$. Find the possible coordinates of D.

