

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

203754743

ADDITIONAL MATHEMATICS

0606/13

Paper 1 May/June 2020

2 hours

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Blank pages are indicated.

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial Theorem

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n}$$

where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{(n-r)!r!}$

Arithmetic series

$$u_n = a + (n-1)d$$

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n\{2a+(n-1)d\}$$

Geometric series

$$u_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r} \ (r \neq 1)$$

$$S_{\infty} = \frac{a}{1-r} \left(|r| < 1 \right)$$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$
$$\sec^2 A = 1 + \tan^2 A$$
$$\csc^2 A = 1 + \cot^2 A$$

Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\Delta = \frac{1}{2} bc \sin A$$

$$f(x) = 3 + e^x \quad \text{for } x \in \mathbb{R}$$

$$g(x) = 9x - 5 \quad \text{for } x \in \mathbb{R}$$

(b) Find the exact solution of
$$f^{-1}(x) = g'(x)$$
.

(c) Find the solution of $g^2(x) = 112$.

2 (a) Given that $\log_2 x + 2\log_4 y = 8$, find the value of xy. [3]

(b) Using the substitution
$$y = 2^x$$
, or otherwise, solve $2^{2x+1} - 2^{x+1} - 2^x + 1 = 0$. [4]

3	At time ts, a particle travelling in a straight line has acceleration $(2t+1)^{-\frac{1}{2}}$ ms ⁻² . When $t=0$, the
	particle is 4 m from a fixed point O and is travelling with velocity $8 \mathrm{ms}^{-1}$ away from O .

(a) Find the velocity of the particle at time ts.

[3]

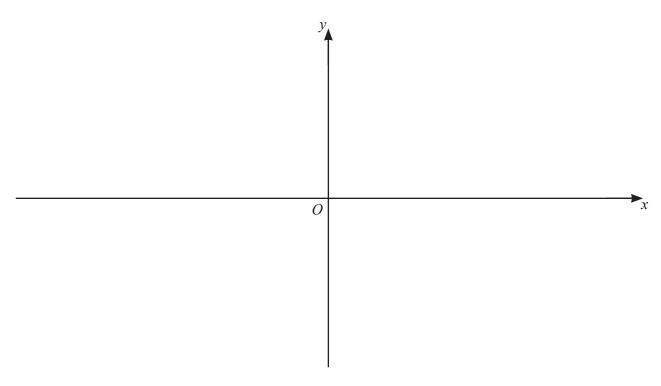
(b) Find the displacement of the particle from O at time ts.

[4]

4 (a) Write $2x^2 + 3x - 4$ in the form $a(x+b)^2 + c$, where a, b and c are constants. [3]

(b) Hence write down the coordinates of the stationary point on the curve $y = 2x^2 + 3x - 4$. [2]

(c) On the axes below, sketch the graph of $y = |2x^2 + 3x - 4|$, showing the exact values of the intercepts of the curve with the coordinate axes. [3]



(d) Find the value of k for which $|2x^2 + 3x - 4| = k$ has exactly 3 values of x. [1]

5 $p(x) = 6x^3 + ax^2 + 12x + b$, where a and b are integers.

p(x) has a remainder of 11 when divided by x-3 and a remainder of -21 when divided by x+1.

(a) Given that p(x) = (x-2)Q(x), find Q(x), a quadratic factor with numerical coefficients. [6]

(b) Hence solve p(x) = 0.

[2]

6 (a) Find the unit vector in the direction of $\begin{pmatrix} 5 \\ -12 \end{pmatrix}$. [1]

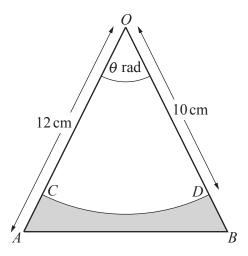
(b) Given that $\binom{4}{1} + k \binom{-2}{3} = r \binom{-10}{5}$, find the value of each of the constants k and r. [3]

(c)	Relative to an origin O , the points A , B and C have position vectors \mathbf{p} , $3\mathbf{q} - \mathbf{p}$ and $9\mathbf{q} - \mathbf{p}$ respectively.					
	(i)	Find \overrightarrow{AB} in terms of p and q .	[1]			
	(ii)	Find \overrightarrow{AC} in terms of \mathbf{p} and \mathbf{q} .	[1]			
	(iii)	Explain why A , B and C all lie in a straight line.	[1]			

[1]

(iv) Find the ratio AB: BC.

7



The diagram shows an isosceles triangle OAB such that $OA = OB = 12 \,\mathrm{cm}$ and angle $AOB = \theta$ radians. Points C and D lie on OA and OB respectively such that CD is an arc of the circle, centre O, radius OB 10 cm. The area of the sector $OCD = 35 \,\mathrm{cm}^2$.

(a) Show that $\theta = 0.7$. [1]

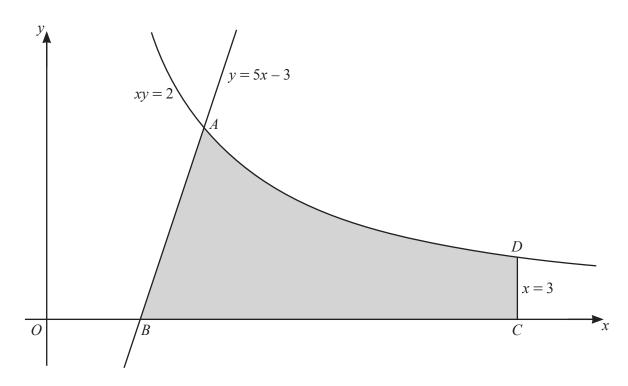
(b) Find the perimeter of the shaded region. [4]

(c) Find the area of the shaded region. [3]

8	(a)	An arithmetic progression has a first term of 7 and a common difference of 0.4. Find the	e least
		number of terms so that the sum of the progression is greater than 300.	[4]

(b) The sum of the first two terms of a geometric progression is 9 and its sum to infinity is 36. Given that the terms of the progression are positive, find the common ratio. [4]

9



The diagram shows part of the curve xy = 2 intersecting the straight line y = 5x - 3 at the point A. The straight line meets the x-axis at the point B. The point C lies on the x-axis and the point D lies on the curve such that the line CD has equation x = 3. Find the exact area of the shaded region, giving your answer in the form $p + \ln q$, where p and q are constants.

Additional working space for question 9.

10 (a) Given that $y = x\sqrt{x+2}$, show that $\frac{dy}{dx} = \frac{Ax+B}{2\sqrt{x+2}}$, where A and B are constants. [5]

(b)	Find the exact coordinates of the stationary point of the curve	$v = x\sqrt{x+2}$	[3]
(v)	I ma the exact coordinates of the stationary point of the early	y 20 1 2.	[~]

(c) Determine the nature of this stationary point.

[2]