Cambridge IGCSE ${ }^{\text {TM }}$

CANDIDATE NAME

ADDITIONAL MATHEMATICS

You must answer on the question paper.
No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 80 .
- The number of marks for each question or part question is shown in brackets [].

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $a x^{2}+b x+c=0$,

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Binomial Theorem

$$
(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{r} a^{n-r} b^{r}+\ldots+b^{n}
$$

where n is a positive integer and $\binom{n}{r}=\frac{n!}{(n-r)!r!}$

Arithmetic series

$$
\begin{aligned}
& u_{n}=a+(n-1) d \\
& S_{n}=\frac{1}{2} n(a+l)=\frac{1}{2} n\{2 a+(n-1) d\}
\end{aligned}
$$

Geometric series

$$
\begin{aligned}
& u_{n}=a r^{n-1} \\
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}(r \neq 1) \\
& S_{\infty}=\frac{a}{1-r}(|r|<1)
\end{aligned}
$$

2. TRIGONOMETRY

Identities

$$
\begin{gathered}
\sin ^{2} A+\cos ^{2} A=1 \\
\sec ^{2} A=1+\tan ^{2} A \\
\operatorname{cosec}^{2} A=1+\cot ^{2} A
\end{gathered}
$$

Formulae for $\triangle A B C$

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A \\
\Delta=\frac{1}{2} b c \sin A
\end{gathered}
$$

1

$$
\begin{array}{ll}
f(x)=3+e^{x} & \text { for } x \in \mathbb{R} \\
g(x)=9 x-5 & \text { for } x \in \mathbb{R}
\end{array}
$$

(a) Find the range of f and of g.
(b) Find the exact solution of $\mathrm{f}^{-1}(x)=\mathrm{g}^{\prime}(x)$.
(c) Find the solution of $\mathrm{g}^{2}(x)=112$.

2 (a) Given that $\log _{2} x+2 \log _{4} y=8$, find the value of $x y$.
(b) Using the substitution $y=2^{x}$, or otherwise, solve $2^{2 x+1}-2^{x+1}-2^{x}+1=0$.

3 At time $t \mathrm{~s}$, a particle travelling in a straight line has acceleration $(2 t+1)^{-\frac{1}{2}} \mathrm{~ms}^{-2}$. When $t=0$, the particle is 4 m from a fixed point O and is travelling with velocity $8 \mathrm{~ms}^{-1}$ away from O.
(a) Find the velocity of the particle at time $t \mathrm{~s}$.
(b) Find the displacement of the particle from O at time $t \mathrm{~s}$.

4 (a) Write $2 x^{2}+3 x-4$ in the form $a(x+b)^{2}+c$, where a, b and c are constants.
(b) Hence write down the coordinates of the stationary point on the curve $y=2 x^{2}+3 x-4$.
(c) On the axes below, sketch the graph of $y=\left|2 x^{2}+3 x-4\right|$, showing the exact values of the intercepts of the curve with the coordinate axes.

(d) Find the value of k for which $\left|2 x^{2}+3 x-4\right|=k$ has exactly 3 values of x.

$$
\mathrm{p}(x)=6 x^{3}+a x^{2}+12 x+b, \text { where } a \text { and } b \text { are integers. }
$$

$\mathrm{p}(x)$ has a remainder of 11 when divided by $x-3$ and a remainder of -21 when divided by $x+1$.
(a) Given that $\mathrm{p}(x)=(x-2) Q(x)$, find $Q(x)$, a quadratic factor with numerical coefficients.
(b) Hence solve $\mathrm{p}(x)=0$.

6 (a) Find the unit vector in the direction of $\binom{5}{-12}$.
(b) Given that $\binom{4}{1}+k\binom{-2}{3}=r\binom{-10}{5}$, find the value of each of the constants k and r.
(c) Relative to an origin O, the points A, B and C have position vectors $\mathbf{p}, 3 \mathbf{q}-\mathbf{p}$ and $9 \mathbf{q}-5 \mathbf{p}$ respectively.
(i) Find $\overrightarrow{A B}$ in terms of \mathbf{p} and \mathbf{q}.
(ii) Find $\overrightarrow{A C}$ in terms of \mathbf{p} and \mathbf{q}.
(iii) Explain why A, B and C all lie in a straight line.
(iv) Find the ratio $A B: B C$.

The diagram shows an isosceles triangle $O A B$ such that $O A=O B=12 \mathrm{~cm}$ and angle $A O B=\theta$ radians. Points C and D lie on $O A$ and $O B$ respectively such that $C D$ is an arc of the circle, centre O, radius 10 cm . The area of the sector $O C D=35 \mathrm{~cm}^{2}$.
(a) Show that $\theta=0.7$.
(b) Find the perimeter of the shaded region.
(c) Find the area of the shaded region.

8 (a) An arithmetic progression has a first term of 7 and a common difference of 0.4 . Find the least number of terms so that the sum of the progression is greater than 300 .
(b) The sum of the first two terms of a geometric progression is 9 and its sum to infinity is 36 . Given that the terms of the progression are positive, find the common ratio.

9

The diagram shows part of the curve $x y=2$ intersecting the straight line $y=5 x-3$ at the point A. The straight line meets the x-axis at the point B. The point C lies on the x-axis and the point D lies on the curve such that the line $C D$ has equation $\quad x=3$. Find the exact area of the shaded region, giving your answer in the form $p+\ln q$, where p and q are constants.

Additional working space for question 9.

10 (a) Given that $y=x \sqrt{x+2}$, show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{A x+B}{2 \sqrt{x+2}}$, where A and B are constants.
(b) Find the exact coordinates of the stationary point of the curve $y=x \sqrt{x+2}$.
(c) Determine the nature of this stationary point.

