Cambridge IGCSE ${ }^{\text {TM }}$

CANDIDATE NAME

CENTRE

ADDITIONAL MATHEMATICS

0606/12
Paper 1
February/March 2022

You must answer on the question paper.
No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 80 .
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Any blank pages are indicated.

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $a x^{2}+b x+c=0$,

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Binomial Theorem

$$
(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{r} a^{n-r} b^{r}+\ldots+b^{n}
$$

where n is a positive integer and $\binom{n}{r}=\frac{n!}{(n-r)!r!}$

Arithmetic series

$$
\begin{aligned}
& u_{n}=a+(n-1) d \\
& S_{n}=\frac{1}{2} n(a+l)=\frac{1}{2} n\{2 a+(n-1) d\}
\end{aligned}
$$

Geometric series $\quad u_{n}=a r^{n-1}$

$$
\begin{aligned}
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \quad(r \neq 1) \\
& S_{\infty}=\frac{a}{1-r}(|r|<1)
\end{aligned}
$$

2. TRIGONOMETRY

Identities

$$
\begin{gathered}
\sin ^{2} A+\cos ^{2} A=1 \\
\sec ^{2} A=1+\tan ^{2} A \\
\operatorname{cosec}^{2} A=1+\cot ^{2} A
\end{gathered}
$$

Formulae for $\triangle A B C$

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A \\
\Delta=\frac{1}{2} b c \sin A
\end{gathered}
$$

1 Find the values of k such that the line $y=9 k x+1$ does not meet the curve $y=k x^{2}+3 x(2 k+1)+4$.

2 DO NOT USE A CALCULATOR IN THIS QUESTION.

Solve the equation $(3-5 \sqrt{3}) x^{2}+(2 \sqrt{3}+5) x-1=0$, giving your solutions in the form $a+b \sqrt{3}$, where a and b are rational numbers.

3 The curve with equation $y=a \sin b x+c$, where a, b and c are constants, passes through the points $(4 \pi, 11)$ and $\left(-\frac{4 \pi}{3}, 5\right)$. It is given that $a \sin b x+c$ has period 16π.
(a) Find the exact values of a, b and c.
(b) Using your answer to part (a), find the coordinates of the minimum point on the curve for $0 \leqslant x \leqslant 16 \pi$.

4 (a) Show that $\frac{1}{2 x-1}+\frac{4}{(2 x-1)^{2}}$ can be written as $\frac{2 x+3}{(2 x-1)^{2}}$.
(b) Find $\int_{2}^{5} \frac{2 x+3}{(2 x-1)^{2}} \mathrm{~d} x$, giving your answer in the form $a+\ln b$, where a and b are constants. [5]

5 Variables x and y are such that $y=\frac{\ln \left(2 x^{2}-3\right)}{3 x}$.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b) Hence find the approximate change in y when x increases from 2 to $2+h$, where h is small.
(c) At the instant when $x=2, y$ is increasing at the rate of 4 units per second. Find the corresponding rate of increase in x.

6 The normal to the curve $y=1+\tan 3 x$ at the point P with x-coordinate $\frac{\pi}{12}$, meets the x-axis at the point Q.

The line $x=\frac{\pi}{12}$ meets the x-axis at the point R. Find the area of the triangle $P Q R$.

7 A curve $y=\mathrm{f}(x)$ is such that $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=(2-3 x)^{-\frac{1}{3}}$. The curve passes through the point $(-2,10.2)$. The gradient of the tangent to the curve at $(-2,10.2)$ is -6 . Find $\mathrm{f}(x)$.

8 In this question, all lengths are in metres and all times are in seconds.
A particle A is moving in the direction $\binom{-20}{21}$ with a speed of 58 .
(a) Find the velocity vector of A.
(b) Given that A is initially at the point with position vector $\binom{5}{-3}$, write down the position vector of A
at time t.

A particle B starts to move such that its position vector at time t is $\binom{-35 t+4}{44 t-2}$.
(c) Find the displacement vector $\overrightarrow{A B}$ at time t.
(d) Hence find the distance $A B$, at time t, in the form $\sqrt{p t^{2}+q t+r}$, where p, q and r are constants.
(e) Find the value of t when the distance $A B$ is $\sqrt{6}$, giving your answer correct to 2 decimal places.

9 (a) The function f is such that $\mathrm{f}(x)=\ln (5 x+2)$, for $x>a$, where a is as small as possible.
(i) Write down the value of a.
(ii) Hence find the range of f .
(iii) Find $\mathrm{f}^{-1}(x)$, stating its domain.
(iv) On the axes, sketch the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$, stating the exact values of the intercepts of the curves with the coordinate axes.

(b) The function g is such that $\mathrm{g}: x \mapsto x^{\frac{1}{2}}-4$, for $x>0$. Solve the equation $\mathrm{g}^{2}(x)=-2$.

10 (a) The first three terms of an arithmetic progression are $\sin 3 x, 5 \sin 3 x, 9 \sin 3 x$. Find the exact values of x, where $0 \leqslant x \leqslant \frac{\pi}{2}$, for which the sum to twenty terms is equal to 390 .
(b) The first three terms of a geometric progression are $20 \cos y, 10 \cos ^{2} y, 5 \cos ^{3} y$.
(i) Explain why this progression has a sum to infinity.
(ii) Find the value of y, where y is in radians and $0<y<2$, for which the sum to infinity is 9 . Give your answer correct to 2 decimal places.

